Jump to content

Flattening

From Wikipedia, the free encyclopedia
(Redirected from Oblateness)
A circle of radius a compressed to an ellipse.
A sphere of radius a compressed to an oblate ellipsoid of revolution.

Flattening is a measure of the compression of a circle or sphere along a diameter to form an ellipse or an ellipsoid of revolution (spheroid) respectively. Other terms used are ellipticity, or oblateness. The usual notation for flattening is and its definition in terms of the semi-axes and of the resulting ellipse or ellipsoid is

The compression factor is in each case; for the ellipse, this is also its aspect ratio.

Definitions

[edit]

There are three variants: the flattening [1] sometimes called the first flattening,[2] as well as two other "flattenings" and each sometimes called the second flattening,[3] sometimes only given a symbol,[4] or sometimes called the second flattening and third flattening, respectively.[5]

In the following, is the larger dimension (e.g. semimajor axis), whereas is the smaller (semiminor axis). All flattenings are zero for a circle (a = b).

(First) flattening  Fundamental. Geodetic reference ellipsoids are specified by giving
Second flattening Rarely used.
Third flattening  Used in geodetic calculations as a small expansion parameter.[6]

Identities

[edit]

The flattenings can be related to each-other:

The flattenings are related to other parameters of the ellipse. For example,

where is the eccentricity.

See also

[edit]

References

[edit]
  1. ^ Snyder, John P. (1987). Map Projections: A Working Manual. U.S. Geological Survey Professional Paper. Vol. 1395. Washington, D.C.: U.S. Government Printing Office. doi:10.3133/pp1395.
  2. ^ Tenzer, Róbert (2002). "Transformation of the Geodetic Horizontal Control to Another Reference Ellipsoid". Studia Geophysica et Geodaetica. 46 (1): 27–32. doi:10.1023/A:1019881431482. S2CID 117114346. ProQuest 750849329.
  3. ^ For example, is called the second flattening in: Taff, Laurence G. (1980). An Astronomical Glossary (Technical report). MIT Lincoln Lab. p. 84.
    However, is called the second flattening in: Hooijberg, Maarten (1997). Practical Geodesy: Using Computers. Springer. p. 41. doi:10.1007/978-3-642-60584-0_3.
  4. ^ Maling, Derek Hylton (1992). Coordinate Systems and Map Projections (2nd ed.). Oxford; New York: Pergamon Press. p. 65. ISBN 0-08-037233-3.
    Rapp, Richard H. (1991). Geometric Geodesy, Part I (Technical report). Ohio State Univ. Dept. of Geodetic Science and Surveying.
    Osborne, P. (2008). "The Mercator Projections" (PDF). §5.2. Archived from the original (PDF) on 2012-01-18.
  5. ^ Lapaine, Miljenko (2017). "Basics of Geodesy for Map Projections". In Lapaine, Miljenko; Usery, E. Lynn (eds.). Choosing a Map Projection. Lecture Notes in Geoinformation and Cartography. pp. 327–343. doi:10.1007/978-3-319-51835-0_13. ISBN 978-3-319-51834-3.
    Karney, Charles F.F. (2023). "On auxiliary latitudes". Survey Review: 1–16. arXiv:2212.05818. doi:10.1080/00396265.2023.2217604. S2CID 254564050.
  6. ^ F. W. Bessel, 1825, Uber die Berechnung der geographischen Langen und Breiten aus geodatischen Vermessungen, Astron.Nachr., 4(86), 241–254, doi:10.1002/asna.201011352, translated into English by C. F. F. Karney and R. E. Deakin as The calculation of longitude and latitude from geodesic measurements, Astron. Nachr. 331(8), 852–861 (2010), E-print arXiv:0908.1824, Bibcode:1825AN......4..241B