Data signaling rate
This article needs additional citations for verification. (March 2017) |
In telecommunications, data signaling rate (DSR), also known as gross bit rate, is the aggregate rate at which data passes a point in the transmission path of a data transmission system.
Properties
[edit]- The DSR is usually expressed in bits per second.
- The data signaling rate is given by where m is the number of parallel channels, ni is the number of significant conditions of the modulation in the i-th channel, and Ti is the unit interval, expressed in seconds, for the i-th channel.
- For serial transmission in a single channel, the DSR reduces to (1/T)log2n; with a two-condition modulation, i. e. n = 2, the DSR is 1/T, according to Hartley's law.
- For parallel transmission with equal unit intervals and equal numbers of significant conditions on each channel, the DSR is (m/T)log2n; in the case of a two-condition modulation, this reduces to m/T.
- The DSR may be expressed in bauds, in which case, the factor log2ni in the above summation formula should be deleted when calculating bauds.
- In synchronous binary signaling, the DSR in bits per second may be numerically the same as the modulation rate expressed in bauds. Signal processors, such as four-phase modems, cannot change the DSR, but the modulation rate depends on the line modulation scheme, in accordance with Note 4. For example, in a 2400 bit/s 4-phase sending modem, the signaling rate is 2400 bit/s on the serial input side, but the modulation rate is only 1200 bauds on the 4-phase output side.
Maximum rate
[edit]The maximum user signaling rate, synonymous to gross bit rate or data signaling rate, is the maximum rate, in bits per second, at which binary information can be transferred in a given direction between users over the communications system facilities dedicated to a particular information transfer transaction, under conditions of continuous transmission and no overhead information.
For a single channel, the signaling rate is given by , where SCSR is the single-channel signaling rate in bits per second, T is the minimum time interval in seconds for which each level must be maintained, and n is the number of significant conditions of modulation of the channel.
In the case where an individual end-to-end telecommunications service is provided by parallel channels, the parallel-channel signaling rate is given by , where PCSR is the total signaling rate for m channels, m is the number of parallel channels, Ti is the minimum interval between significant instants for the I-th channel, and ni is the number of significant conditions of modulation for the I-th channel.
In the case where an end-to-end telecommunications service is provided by tandem channels, the end-to-end signaling rate is the lowest signaling rate among the component channels.
Rates and standards
[edit]Data Rate | Standard |
---|---|
1.5 Mbit/s | USB 1.0 |
1.544 Mbit/s | Digital Signal 1 |
12 Mbit/s | USB 1.1 |
155 Mbit/s | OC-3 |
480 Mbit/s | USB 2.0 |
622 Mbit/s | OC-12 |
1000 Mbit/s | Gigabit Ethernet |
1063 Mbit/s | Fibre Channel (1GFC) |
2125 Mbit/s | 2GFC |
2488 Mbit/s | OC-48 |
2500 Mbit/s | 2.5GBASE-T, InfiniBand |
2666 Mbit/s | OC-48(FEC) |
3125 Mbit/s | ×4 10GBASE-LX4 |
4250 Mbit/s | 4GFC |
5000 Mbit/s | 5GBASE-T, USB 3.0, USB 3.1 Gen 1 |
8500 Mbit/s | 8GFC |
9.953 Gbit/s | OC-192 |
10.000 Gbit/s | USB 3.1 Gen 2 |
10.3125 Gbit/s | 10 GbE, ×4 40GbE, ×10 100GBASE-CR10 |
10.51875 Gbit/s | 10GFC |
10.664 Gbit/s | OC-192 (FEC) |
10.709 Gbit/s | OC-192 (ITU-T G.709) |
11.100 Gbit/s | 10 GbE FEC |
14.025 Gbit/s | 16GFC "Gen 5" |
25.78125 Gbit/s | ×4 100GBASE-CR4 |
28.05 Gbit/s | 32GFC "Gen 6" |
28.05 Gbit/s | ×4 128GFC "Gen 6" |
120.579 Gbit/s | 100GBASE-ZR |
See also
[edit]References
[edit]- This article incorporates public domain material from Federal Standard 1037C. General Services Administration. Archived from the original on 2022-01-22.